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THEORY OF MICROPOLAR FLUIDS .

A. Cemal Eringen
Purdue University

ABSTRACT:

Equations of motion, consi.itutive equations and boundary conditions
are derived for a class of fluids named micropolar fluids. These
fluids respond to micro-rotational motions anmd spin inertia and
therefore, can support couple stress and distributed body couples.
Thermodynamical restrictions are studied in detail and field equations are
obtained for the density, velocity vector and micro-rotation vector.
‘'he system is solved for & channel flow exhibiting certain interesting

phenomena.




1. INTRODUCTION

The theory of microfluides introduced by Eringenl’2 deals with
a class of fluids which exhibit certain microscopic effects arising
from the local structure and micro-motions of the fluid elements.
These fluids can support stress moments and body moments and are
inflvenced by the spin inertia. The theory of microfluids are,
however, too complicated even in the case of constitutively linear
theory and the underlying mathematical problem is not eesily amenable
to the solution of ron-trivial problems in this field.

A subclass of these fluids is the micropcolar fluids which exhibit

the micro-rotastional effects and micro-rotational inertia. This

class of fluidls possesses certain simplicity and elegance in

their mathematical formulation which should appeal to mathematicians.
The micropolar fluids can support couple stress and body couples only.
Physically they may represent adequately the fluids consisting of

di; 7le elements. Certain anisotropic fluids, e.g. liquid crystals
vhich are made up of dumbbell molecules, are of this type. In fact,
anime]l blood happens to fall into this category. Other polymeric
fluids and fluide containing minute amount additives may be repre-
sented by the 'lithemtical model underlying micropolar fluids.

3,4

Recent experiments with fluids containing extremely small

amount of polymeric additives indicate that the skin friction near a

'A. C. Eringen, Int. J. Engng. Sci, 2, 205 (1964).

2A. C. Eringen, "Proc. XI Intern. Congress of Appl. Mech." Springer-

Verlag (1565).



rigid body in such fluids are comsiderably lower (up to 30-35%)
than the same fluids without additives., The classical Navier-Stokes
theory is incapable of predicting these findings since it contains
no mechanism tco explain this new physical phenomena. At the Naval
Hydrodynamic Conference at Bergen last year, September 196k, the
author suggested that5 the microfluid theory may contain just the
right mechanism required. While it is too early to make the final
conclusion on this question, the problem of channel flow worked
out in this paper is a positive indication of this conjecture.

In Arts, 2 and 3 we give a resume of the theery of microfluids
formulated in Ref. 1. The theory of micropolar fluids is developed
in Art. 4. In Art. 5 the thermodynamics of such fluids are studied
and the restriction on the viscosity coefficients are obtsined.

In Art. 6 ve give the field equatiors ard boundary conditions and
present the similarity parameters. The last section of the paper
(Art. 7) is devoted to the solution of the problem of channel flow

of micropolar fluids.

5\J. W. Hoyt and A. G. Fabula, "The effect of Additives on Fluid Friction,"”
U.S. Naval Ordoance Test Station Report (196k).

l"w. M. Vogel and A. M. Patterson, "An Experimental Investigation of the
Effect of Additives Injected into the Boundary layer of an Underwvater
Body," Pacific Naval lab. of the Defense Res. Board of Canada, Rpt. 6.2,
5A. C. Eringen, Proc. 5th Symposius cn Naval Rydrodynmamics, Bergen,

September 10, 196k,
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constitutive theory.

2. LAWS OF MOTION

In our previous work, Ref. 1, we formlated a theory of micro-

known principles of mechanics. These are

Conservation of mass:

dp = 0 i
s * v, n

Balance of momentum:

tkt,k + p(f‘ -v‘) = 0 in

Balance of first stress moments:

ot " %me t Netmx Y Pl - ) = O

Conservation of energy:

fluids whose behavior is governed by a set of laws of motion and a
Some of these laws are new to the mechanics

of continua and others are mndifications and extensions of the well-

Vv’ (2.1)

in

v (2.2)

V4 (2.3)

e = b Vet e - b)) et N Vagx t Y TP

Principle of entropy:

; e -
pl‘lo'l-(gs)k %E 2 0

cesses, In these equations

Inequality (2.5) is axiomatized to be valid for all

in 7 (2.4)
in 77 (2.5)

independent pro-



p = mass density

Vi = velocity vector

tkl = sgtress tensor

b 4 P = body force per unit mass

8, "= micro-stress average

}‘klm = the first stress moments

. = the first body moments per unit mass

» inertial spin

€ = internal energy density per unit mess

v = gyration tensor

Q = heat vector directed outward of the body
k = heat source per unit mass

n = entropy per unit mass

6 = temperature

Throughout this paper we employ a rectangular coordinate system

X0 %, x.j and the Eulerian representation, Fig. 1. All vectors

and tensors are referred to a set of spatial rectangular coordinates

80 that no need arises for differentiating their covariant, contravariant
and mixed components from each other. An index fqllowed by a comma
represents partial differentiation with respect to space variabdble Xy

and a superposed dot indicates material differentiation, e.g.

avk v
et ® O e T ® T a (2.6)

e e ——




Here and throughout this paper repeated indiices denmote summation
over the range (1, 2, 3).
For the spin inertia we have the kinematical relation (Ref. 1,

eq. 5.5)

o, f i, (mG+vnk an) (2.7)

vhere 1 ot - i tn is called micro-inertia moments and according to
the law of comnservation of micro-inertia, they satisfy the partial

differential equations (Ref. 1, eq. 2.16)

ol
?h_n_ + 1kmr".'r-i v. -1 v = 0 in V (2.8)
’

m rk kr ™
Expressions (2.1) to (2.5) and (2.8) are valid at all parts of the
body B having volume V and surface y , except at finite
number of discontimuity surfaces, lines and points. At the surface

-.Sp of the body we have the bouudary conditions
tkl o = t, on .9’ (2.9)
Nen ™ * Mg on < (2.10)

vhere p is the exterior normal to & and t, and )\‘. are
respectively the surface tractions and surface moments actipg on y .
We note that vhile equations (2.1), (2.2) are well-knowvn from

the classical contimuum mechanics, equations (2.3), (2.%) and (2.8)




are new, The first two of these equations (eq. 2.3 and 2.4) reduce

to classical resultssu

hed
)
]

ey " + 9 i + ph (2.11)

vhen A, = L0 Vyp = O . Equation (2.3) is, however, mich
more general than (2.11)1 and is the result of the new principle of
balance of first stress moments as against the limited axiom of balance
of moment of momentum of the classical treory. Equations (2.8) have,
of course, no counterpart in the classical continmuum theory.

If we exclude the heat conduction phenomena, in the present
theory, the determipation of motion requires the determination of the

nineteen unknowns.

plet) » 1 &) 5 v (pt) , v, (Kt) (2.12)

as against tke four urkn~.)a Ve and p of the classical theory.

6A. C. Eringen, "Monlinear Theory of Contimuous Media,” McGrav Eill (1962).




3. CONSTITUTIVE EQUATIONS COF MICROFLUIDS

In Ref. 1 we also gave a set of corstitutive equations for micro-
fluids. For a non-heat conducting medium these are expressed as

relations between (tkt 5 Skz ’ Akzm) and the objective quantities

1l
Gy = 3 (Vg t vy ) (3.1)
b, @ vk,‘ + v, (3.2)
Seim ¥ Vis,m (3.3)

and o and 1km . Of theece d 18 the rate of deformation tensor
and b and a &are two new tensors respectively called micro-

deformation rate tenmsor of second order and gyration gradient. Both

of these latter quantities transform like absolute tensors under any
rigid motion of the frame of reference, i.e. they are objective.
Hence they are suitable for use as the independent constitutive
variables.

For cthe present vork we produce here only the results of the
linear constitutive theéry of micro-isotropic fluids (i.e, i

For the nonlinear theories the reader is referred to Ref, 1.

g lmedtrged tr ()] I+2d+ 2 )+ 2,070 (3.4)

oy O 1akm).



g = lmentrgen tr OII+ug+l -2 (3.5)

A =
kim (71 amrr b

a ) 8

To Oy * 73 8rrm’! Okt 4 (7h Sgpr ¥ 75 8ppr

+ 7% arrl) 8km + (77 Syrr + 78 8 kr + 79 arrk) slm
*70%mt 71 Yome Y T2 2oem Y 705 G * 7ok Gamk

+ 715 amlk (5‘6)

where ] is the unit tensor and k,,,xo,p,po,ul, o,cl,
and 7l to 715 are the viscosity coefficients. Also tr denotes

trace and & superscript T indicates transpose, e.g.,

tr bkl

™~

"
OOW
Or O
H OO
-

m
o’

-

o’

-

(<2

The equation of state for these fluids can be shown to have

*
the form

€ = G(“;O-l) (3.7)

80 that the thermodynamic pressure. T and the temperature 6 are

defined by

d¢

d¢
= Ig},i H 6 3 Eﬁlp,i (508)

3 °

T -

L 3
For a detailed treatment on thermodynamics see Ref. 1. For the thermo-

dynamics of micropolar fluida see section 5 below.




For non-heat conducting media, the nineteen unknowns (2.12)
must satisfy the thirteen partial differential equations obtained by
substituting (2.7) and (3.4) to (3.6) into (2.1) to (2.3) and the
six equations (2.8) so that che number of independent equations are
equal to that of unknowns. Equations so obtained are nonlinear in
the inertia terms and highly complicated otherwise. The purpose of
the present paper is to give a new theory applicable to a large
class of fluids falling within the framework of the microfluid
theory presented above, however possessing adequate mathematical

simplicity to make the engineering problems tractable.
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4, MICROPOLAR FLUIDS

A microfluid will be called micropolar if for all motions

Ntm f N 7 Ve T Vi (4.1)

Micropolar fluids exhibit only micro-rotational effects and can
support surface and body couples. Fluid points contained in a
small volume element, in addition to its usual rigid motion, can
rotate about the centroid of the volume element in an average sense
described by the gyration tensor ¥ . No micro-stretch of particles

are, however, allowed ( is skew-symmetric). Thus micropolar

Vit
fluids consist of a kind of dumbbell molecules.*

We now proceed to show that a clase of microfluids satisfying
(4.1) exists. The theory of such fluids is the subject of the
renainder of this paper.

Condition (h.l)2 implies that

& m B (4.2)

Calculating Aktm and 'kaz from (3.6) and equating them and

using (h.l)2 and (4.2) we find that if (4.1) is to be valid for all

motions we must have

*
The present work complements our previous work, Ref. 2, on a similar

subject.
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77 S 78 = 0 (4.3)
70" 72 "1 " 713
8o that
Neam = 70 a5y me Bi) + (rggmp) ey -ayny)

+ (rpnys) e (4.4)

In view of skew-symmetry conditions (4.1) the independent number
of vk‘ and Akzm are respectively 3 and 9. Thus it is natural

to introduce two new sets of variables v, and mkz by

k
v z Le v \J = € \ (4.5)
r ° 2 °rkt ki z 'Y rkf r '
Ter ¥ “Crim kkzm Z Akzm = 2 By (4.6)
vhere ‘klm is the alternating tensor. Here the axial vector vr

will be called micro-rotation vector and m__ the cocuple stiress
N oDi

tensor. The sign conventicn for Py is identical to that of the
stress teinsor and is shown on Fig. 2. Similarly we introduce micro-

. *
ipertial rotation ak and body couple lk by

*
The couple stress, body couple and micro-inertial rotation intro-

duced here are identicel to those defined in Ref. 6, Art. 31.
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% % “Srxe s ) ey S (4.7)
L R ) ) et = P b (+.8)
Now multiply (2.3) by € m and use (4.5) to (4.8) Since
8 s B this results in
mé fm
Do r NP tlr + p(zk S ok) * 0 (4.9)

Similarly using (4.5) and (4.6) in (2.4) we may replace the equation

of energy by

pe = by (Vg - g V)t vy g +oeh (k.10)

An alternative but useful form to (4.10) is obtained by using

Ve © Gt Y%t Gt Ckim Vn

where
W = 1 (v -v, ) (%.11)
ke 2 Vk,2 " 4,k
and
i, the classical spin tensor/ w s the vorticity vector. Hemce

Pe = by dp -ty g (Wt V) v m, v tq oD (k.12)




13

The boundary conditions (2.10) are similarly replaced by

m, B, = m on :;0 (4.13)

Where mo= € A‘m is the surface couple vector acting
on 5;7 . Next we turn our attention to the constitutive equations.

Equation (3.4) can be put into the form

beg T TNV ) S, e, (v g b vy ) bk g V) (4)
vhere we set

T S T TR (T B L (4.15)
An alternative form to (4.14) is
ty, ® (-7 + Av drr) Bkz + (2uv + xv) Aoy = K, €pr (wr + vr) (4.16)

If we multiply (4.4) by €.y ond use (4.5) and (4.6) this
2quation can be transformed into

Be T % Vr,r bkl + By Vk,z ty Vz,x (£.17)
vhere

a s 2r,-74 B, = 20y, -7)

v, 2y -t gyt 715) (.18)

-
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1k

We now substitute (4.16) and (4.17) into (4.12) to calculate the

rate of internal energy.

pe = Tt A Ay dg (g K) 4, d,

+ 2K, (wk + vk)(mk + vk) +d Vi k Ve, 0

v ikt ek T Ty Vek Ve T %on
The assumptions of micro-isotropy and the skew-symmetry of

V.4 Vhen used in (2.8) gives

g%- = 0 or 1 = const = j/2, on material lines (4.20)

Finally we give an expression of the inertial rotation

€ e 10V * Vo Vo)

% % “€rxt %2

using (h.l)2 this reduces to

= 3 4 o1y
o) J s (h.21)

Summarizing the results: Basic equations of motion (2.1), (=2.2),

(4.9) energy (4.10) and the constitutive equations (4.1k4) and (4.17)

constitute a proof that the micropolar fluids may exist as a subclass

of microfiuids whenever (4.3) is satisfied. The thermodynamic reetric-

ticne on the viscosities are studied in the following article.
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5. THERMODYNAMICS OF MICROPOLAR FLUIDS

In this paper we are prima:ily concerned with the non-heat
conducting microfluids. In accordance with the principle of equi-
presence (Ref. 6, Art. 44) every constitutive dependent variable
must be a function of the same list of variables until contrary is
shown to be the case., In harmony with this practice then the

equation of state of micropolar fluids must have the general form

1
€ = &M, 07, 8, b, 8,,)

The dependence on i 1is dropped since 1 = const along & material

line. Ve proceed to show that the dependence of € on ¢ , b and

(5.1)

8 can be eliminated on the ground of the second law of thermodynamics

(2.5). Eliminating (qk Kt ph)/6 between (4.10) and (2.5) we get
1

. qe
coey 1 1 N
PN - g) *+ gty vy - g V) * 50y "z,k*“;f" 2 0

Using (5.1) this becomes

1 1 Jde d¢ . d¢ '

(5.2)

. de b . p Jde .
or s M-zt 5*5(a % * T %% * o %k

dp ks kZ

1 U0
* e Yokt Sk V) YT e Vet = =20

kim

is ipequality must be sautisf.ed for all independent changes of 0,
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d,0,8a and 6 K ° Since it is linear in these quantities, it
)
cannot be maintained for all independent variations of these quanti-

ties unless

il v =

q = 0 (5.%)

6 = R (5.5)
p

pr= - %g':_-fdkk * %tkt (Vy k= e Vo) * %mkl Yyx 2 0 5.6)

where through (2.1) we replaced é by -pdkk . In (5.3) a paranthesis

enclosing indices indicates the symmetric part, e.g.

Oe ~ b (ae " o5 )
& T2 o, ody

Since any function € of a symmetric tensor dkz can always be

expressed as a function d we see from (5.3) that € must be

(ke)
independent of d , b and a . Using (4.16) and (4.17) the inequality
(5.6) is further reduced to

1
of 2 [N Ayt (2uv +x,) dy 4, + 2K, (wk+vk)(uk+vk)+

& ek Vet B Ve Vet Ve Ve 200 (5.7)




We have thus proved

Theorem 1. The necessary and sufficient conditions for the local

Clavsius-Duhem inequality (2.5) to be satisfied for all independent

processes ere: (1) € mst be independent of 4 , b and & ;

(11) temperature 6 and pressure T mst be defined by (3.8) and

(111) inequality (5.7) must be setisfied for all possible motions.

We now investiigate the restrictions emanating from the satisfaction
of (5.7) for all independent 4 , W+ Vv and Vyp + It is clear
)

that for all velues of d irrespective of w + V and Yy ¥E
?

must have the classical conditions

H

%(3>\v+2uv+xv)go , = 20

which are necessary and sufficient for the ron-negativeness of the

terms containing 4 . Similarly we must also have

x/6 20

in order that pI' be non-n2gative for all values of w+ V.

Finally the conditions in av , B, and 7, are obtaired by making

v
the last three terms in (5.7) non-negative, i.e.

7l

v v
v k,h 3,!‘!

B Vet Vet Ty ik Ve 20

This expression can be written as a quadratic form in @ nin® dimen-

sional space. i.e.
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f1991 Yy 20 5 8y = oay

where

1E ML 0 2t e s vy R,
yh E vl,2 ) y5 ] V2,1 y y6 E V2,3
1.7 V52 0 Y8 % V5, s yg o=y,
a = a = a - 1 (x +B.+7),a = a = a /6
11 22 33 6 v v v’ M2 13

all other a = 0,

The characteristic values a.i of aiJ are obtained by solving the

equation

det (a.iJ -a EiJ) = 0

The nine roots for a are

1 2 3 v v
ah = 8.5 = 8, = 37 = a'8 = 7V + BV
89 = 50‘, + BV + 7V




-
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In order that the ai.j Yy yJ 2> 0 to be satisfied for all y, wve
must have
(r, -B)/6 2 0 » (b, +B)/6 20

(a_+8 +7.)/6 2 0

Hence

Theorem 2. The necessary and sufficient conditions for the inequality

(5.7) to be satisfied fur all motion are

(A, +2u +xk)/6 20 , wujfe 20 , «/6

v
(@]

(5.8)
(Ga +275)/e 2z 0 , - /e<s /o<y /6 , 7, /6 20

These are the conditions on the viscosity coefficients. In general
we a&lso have 6 > O,

Corollary. The necessary and sufficient condition for the local

Clausius-Duhen inequality to be satisfied for all independent processes

are (5.8). This result is clear as a combination of Theorems 1 and 2.

R e ] il M
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6. FIELD EQUATIONS

The differential equsations satisfied by op , Ve and vk are given by

(2.1) and comtinations of (4.14%)and (4.17) with (2.2) and (%.9), 1.e.,

g{' + o lov) = 0 (6.1)

'Tr,k * (}‘v * ”v) "z,kz < (uv ¥ Kv) "k,u * Ky Cxim Vm,z

n
o

+ p(fk -V

K) (6.2)

(av * Bv) V!,kt Yt S Sk Vm,2 " 2K %

+ p(!k -dv) = 0 (6.3)

where a superposed dot indicates the material differentiation, i.e.

. bvk . avk
Vk 2 a— + vk,‘ Vz ) Vk H &—‘F Vk" Vl (6.1‘)

The partial differential equations (6.1) to (6.3) are the field
equations of the micropolar fluids. Under sppropriate initial and
boundary conditions they are capable of predicting the behavior of
such fluids in a unique fashion. The existence and uniqueness
theorems must of course be proven in order for the underlying mathe-

matical problem to be "well-posed." Presently we only suggest some

oA R W L SR e AN AESTP L e ome .
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initial and boundary c¢cnditions.

Initial conditions EE. t =0

p(x,0) = po(x)
v (2,0 = g () (6.5)

where Py !o and 20 are to be prescribed throughout .

Boundary conditions at a rigid boundary

zgt) = xp

(6.6)

Mxgpt) = vy

where EB is & point on a rigid boundary having prescribed velocity
Yy @nd prescribed micro-rotation vector vp. Conditions (6.6) express
the assumption of adherence of the fluid to the solid boundary.

Boundary conditions involving prescribed forces and moments

In piace of (6.6) we may prescribe boundary forces and moments as

expressed by (2.9) and (4.13), i.e.

Y Y

(6.7)
e %k 7Ty

Other types of mixed conditions are possible. The final judgement

on these questions requires theoretical work on the question of

i
»
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existence and uniqueness and experimental work on the flow conditions.
Equations (6.1) to (6.3) are expressed in rectangular coordinates.
Vector expressions of these equations useful for work in other systems

of coordinates are

%% +g-(py) = O (6.8)

(7\v+2|.1v+l(v)2251-(uv+Kv)2XZXI+KVZX_y_-YTT

vop = ol & - xx (Txy) + 3] (6.9)

(@, +B, +7,) YL ¥-7 YXYXY+K TXY

-2k v+pL = pJV (6.10)

vwhere & does not possess as simple an expression as i « There
is, however, no particular difficulty in calculating it through its
tensorial form, cf. [2, 17, also Appendix].

We note that for Kv = av = Bv = 7v = 0 and vanishing £
through (6.3) we get v, =0 and (6.2) reduce to the celebrated
Navier-Stokes equations. Note also that for K, = 0 the velocity

Y and the micro-rotation are uncoupled and the global motion is

unaffected Ex_the micro-rotatiorns.

The classical Stokes condit:ions BAV + auv = O for the micro-

polar fluids have the corresponding form

3>\v + 2“v +k, o= 0 (6.11)
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to which we place no great faith.

For an incoggressible fluids p =const , ¥ *y =0 and

T is replaced by an unknown pressure p to be determined from
the boundary conditions.

The similarity parameters of the micropolar fluids are obtained

by non-dimensionalizing equations (6.1) to (6.3). Thus let L and

T be respectively some characteristic length and time and

Eewt , Trur , Teuy , T:ouy
T = Tr/TTO ’ E = p/po ’ F = f./fo P) 3 8 J/JO (6-12)
are

vhere T, P, V £, and J /some reference values of T ,

o’ Y%’
o, lxl , l¥l , |£] and J respectively. Substituting (6.12) into (6.1)

to (6.3) and using (6.4) we get the non-dimensional equations

) (== -
n5 a—f + fp vk),k = 0 (6.13)
Dy Veke Y P2 Vi, e T3 Ckam Vmye T ™ Tk
- k = —
+ p(n6 fk - n5 a?- - vk,l VE) = 0 (6.11‘)
m '\7‘ +m. V. +m € v -2m V
ke T2 Vi ue T T3 Ckam Vi, o L Vi
epm T -0, .3 . FT) =0 (615
A% “k = M5 5 k,2 '8 .
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vhere

n = (Av + pv)/povoL s neh\; (pv + KV)/DOVOL ,.n5 = vao/povo2

n, = 17'0/povp2 » By ] L/Tvo » ng = foL/vo2

m =S (av * Bv)/po'jovo » o ® 7v/po'jovo v My 2 Kv/pojovo

m, = KVL/DOJOVO ) Mg = Ny , mg = EOL/JOVOVO (6.16)

Of these D n, are the reciprocal Reynold numbers, n, , n5

and ng are well-known from the Navier-Stokes theory. The present
theory introduces six new numbers namely n5 ) My, My, m3 s m,

and Mg For a given fluid m, 1is proportional to m, s0 that the

1
only new parameters are

=]
1]

2
3 Ky Vo/povo )y My ® 7v/poJovo » M @ KvL/poJovo

my = mh/m} 2 voL/vo » mg = EOL/JOVOVO (6.17)

The four of these new similarity parameters represents the relative
importance of rotational viscosities to the inertia terms and the

fifth Eﬁ the relative micro-rotation velocity to the velocity.
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A

7. FLOW OF MICROPOIAR FLUIDS IN A CIRCUIAR PIPE

Here we give the solution of the field equations (6.8) to (6.10)
for a steady motion of micropolar fluids in & circular channel. The
appropriate coordinate system for this problem is the cylindrical
coordinates (r, 6, z) with z taken along the axis of the pipe. For
8 steady flow we seek to determine the velocity and micro-rotation

components

v =v_=0 , 7, w(r)

(7.1)
Q’r"(pz"o ’ Q)e=q>(r)

Equation of continuity (6.8) is satisfied identically for p = const.

and (6.9) and (6.10) with £ = £ = 0 give p LS P 0 and
) )

(, +«) (') + 6 (pv)' = 1D (7.2)

' -l'_ v -
7v(v + T V) KV 2va 0 (7.3)

vhere a superposed prime indicates differentiation with respect to r.
We also used p to denote hydrostatic pressure in place of 7.
From (7.1) we solve for w'. Hence

, <1 r =1
A (pv + Kv) (-va +3 p,z) + Clr (7.4)

Next substitute w' into (7.3). This gives

v+ %y (k° + l?')v - Pr (1.5)
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where

2uy + Ky Ko 1/2 K a .
kKE ( v ° 4 ) , PE —— e - (‘7_6)
M, TR, 2(pv + Kv)yv dz

The general solution of (7.5) is found to be
-2
veA Il(kr) + B Kl(kr) -Pk r (7.7)

where Il(p) and Kl(p) are modified Bessel functions of first order
and first and second kind respectively. Substituting this into
(7.4), and integrating the result we obtain

V=K (“v + Kv)‘l k'l [-A Io(kr) + B Ko(kr)]

<

(7.8)

Nh—-

2
( 2u + K ) p, T + Cl logr+ C

vhere Io and Ko are modified Bessel functions of zeroth order and

first and second kind respectively and C is an arbitrary constant.
Both w and v must be bounded at r = 0. Since Ko(kr), Kl(kr)

and log r become infinite for r = 0 we must have B = C_ = 0, We

1l
assume that the fluid sticks to the boundary r = a, i.e,,

vw(a) = 0 3 v(a) = 0 (7.9)

Using (7.7) and (7.8) we determine A and C leading to the solution

2 ()
w/wo =1-p + i K TQ—(T)_ [I ()‘) -1] (7.10)
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va/wO =p - %%%%?) (7.11)

where

5. 80 = Gy
3 = - + K
wo . (2uv v)

dz
p=r/a (7.12)
row B e
v v v

Here wo is the maximum velocity in the classical Poiseuille flow
which occurs at r = 0. The solution (710) goes into the classical
Poiseuille flow for K, = 0 and (7.11) gives v = 0.

According to (5.8) with 6 > 0O we have M, Kv and 7, non-
negative. Thus A is a real number. For various values of A we
give on Fig. 4 plots of velocity difference from the classical
Poiseuille flocw and on Fig. 5 vh/wo. From Fig. 4 as well as Fig.
3 we see that the velocity profile i1s no longer parabolic. Moreover
the velocity here is smaller than that of the classical Navier-Stokes
fluids. Of course, micro-rotation v is altogether missing in the
Navier-Stokes theory.

The non-vanishing components of the stress tensor and those
of the couple stress are obtained through expressing (4.14) and
(4.17) in cylindrical coordinates. Hence

t = .'=t 2 -

rr 66 zz P
1dp

t L B a

rz 2 dz P

b,
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2 dz

2r M, + Kv 11(7\) (7.13)
Moy = (av wo/2a) 1+ ;1%2?;) - NI (M) ]

I1 )
- (7V/BV) mre

We note that t # t whenever x4 O,
rz ' zr v

On Figs. 6 tc 7 are shown the surface tractions and couples on
the fluid surface adjacent to the wall at p = 1 for dp/dz <0, Bv <0
and of course 7v > 0. The shearing stress trz has the same expression
as in the classical theory. However the existence of the distrib-
uted couples mer on the fluid surfa££>si1?)produce an effect in a
thin layer near the wall, equivalent to reduction of the surface
shear. Clearly then the present theory gives rise to a boundary
layer phenomena not present in the Navier-Stokes theory. This new
boundary layer is controlled with the parameter A.

We helieve that the theory of micropolar fluids opens up a
very worthwhile branch of fluid mechanics. It should find important
applications dealing with a variety of fluids. It should, in
particular cast new directions in the theory of turbulence. Rich

theoretical and experimental studies are awaiting the future workers.
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Fig. 3 Velocity Profile
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Fig. 5 Micro-Rotation




33

A A=w

Fig. 6 Shear Strezs Difference



Fig.

1

Couple Stress

a mGr/Bv '0



35

Contributing Personnel:

Dr. A. C. Eringen, Professor

School of Aeronautics, Astronautics and Engineering
Sciences

Respectfully submitted,

A g

A. Cemal Eringen

ol FAF = (o

P L 4

Paul F. Stanley, Interim Head

School of Aeronautics, Astronautics
and Engineering Sciences




